Patients with renal disease and obesity were predominantly excluded from the drug development studies. There is little evidence to guide the management of patients with extreme values of renal function or body weight. Data are also limited in newborns, children, pregnant women and the critically ill.
Many clinicians recognise the limitations of the fixed or weight-based dosing strategies. They reduce the recommended doses in an effort to minimise the likelihood of an adverse event or opt for monitoring to guide their choice of dose.3
Measuring anti-Xa activity
Low molecular weight heparins predominantly affect the activity of factor Xa, so it is appropriate to monitor them with an anti-Xa assay. The measured anti-Xa activity is considered to be directly proportional to the plasma concentration. Fondaparinux and danaparoid are two other drugs that inhibit factor Xa and their activity can also be measured using an anti-Xa assay.
The recommended method is the chromogenic procedure.1 The patient's plasma is added to a known amount of excess factor Xa. If a heparin is present in the plasma, it will bind to antithrombin and form a complex with factor Xa. The amount of residual factor Xa is inversely proportional to the amount of heparin in the plasma. The residual factor Xa is detected by adding a substrate that mimics the natural substrate of factor Xa. This is cleaved by the residual factor Xa, releasing a coloured compound (chromophore) that can be detected by a spectrophotometer. The quantity of chromophore released is inversely proportional to the activity of the heparin present. Each chromogenic substrate release is measured against a calibration curve that is specific to each heparin (or heparinoid). Recently multicalibration kits have become commercially available. Results are expressed as units/mL or units/L of anti-Xa activity.
The assay is not widely available and is reported to be poorly standardised between laboratories. There can be wide variations in the results obtained from the same plasma sample.4 Antithrombin deficiency affects the assay, however this is rare.
Sampling
If the monitoring of anti-Xa activity is deemed necessary, sampling should occur as soon as possible after starting or adjusting treatment. The low molecular weight heparins have a half-life of four to six hours in average adults and a steady state will occur within one day. The half-life will be prolonged in renal impairment, but this should not detract from an assessment of these patients who are at risk of bleeding.
A maximum plasma activity or concentration above the target range increases the risk of bleeding. To estimate this peak concentration (C max), the recommended sampling time is four hours after the dose. This time will often misrepresent the true C max due to inter-individual variation in pharmacokinetic parameters. In some patients the peak concentration can be reached in one hour, however a reasonable representation can be gained between three and five hours after the dose. Sampling outside this time window will affect the ability to interpret the results. Often blood cannot be collected at the preferred time, so the result needs to be extrapolated to the 'true' Cmax. This can be difficult and when in doubt the clinician should take another sample after the next dose.
Trough monitoring has been suggested. If trough monitoring is indicated the sample should be taken 12 hours after the dose, immediately before the next dose.
Therapeutic range
As with all anticoagulation, clinicians seek a therapeutic range that minimises the risk of bleeding and embolic events. The most robust data for enoxaparin come from the Thrombolysis in Myocardial Infarction 11A trial where peak anti-Xa concentrations greater than 1.0 IU/mL increased the incidence of bleeding.5 A later study found that patients with a peak concentration less than 0.5 IU/mL had a threefold increase in re-infarction and mortality when compared to patients with a concentration between 0.5 and 1.2 IU/mL.6 When using enoxaparin at a twice-daily dose, the clinician should therefore aim for a peak concentration between 0.5 and 1.0 IU/mL although some guidelines recommend 0.5–1.2 IU/mL or 0.6–1.0 IU/mL.1 A recent study suggested that a 50% reduction in adverse events would occur if the trough (C min ) is less than 0.5 IU/mL provided that the peak (C max ) is above 0.5 IU/mL.7
The suggested peak activity range for once-daily treatment is 1.0–2.0 IU/mL and 0.2–0.4 IU/mL for prophylactic use, albeit without supporting evidence. 2,8 As evidence supports the link between bleeding and a peak concentration greater than IU/mL, the higher range for once-daily treatment is fraught with danger if a patient has severe renal impairment with reduced ability to eliminate the drug.
The target anti-Xa range for a peak concentration for dalteparin is listed in the product information as 0.5–1.5 IU/mL. Although clinical studies are lacking to support this range, it is assumed the concentrations above this range are linked to bleeding. For treatment doses, the reported therapeutic range for anti-Xa activity of danaparoid is 0.5–0.8 IU/mL.
The evidence for all therapeutic ranges originates from studies in arterial disease. Few data exist that define a separate range for venous disease.