Once the animal studies have suggested an appropriate dose and have provided adequate evidence that the drug candidate has some efficacy and appears to be safe, human studies may be started. Clinical trials must be conducted according to Good Clinical Practice, which defines a set of very strict conditions developed by international regulatory bodies in agreement with the principles espoused in the Declaration of Helsinki. The design of these trials is determined in consultation with one of the major drug regulators such as the FDA in the USA. Classically, there are four phases of trials in the development of a new medicine.
Phase 1
Phase I trials are typically conducted in healthy young male volunteers in groups of about 10−20. They are designed to assess how the drug is absorbed, distributed, metabolised and excreted by the body (that is, pharmacokinetics) and to establish the safe dose for phase II trials.
Phase II
Phase II trials are designed to examine what effect the drug has on the body (that is, pharmacodynamics) such as heart rate, blood pressure and cognitive effects, depending on the disease the drug is being developed to treat. These studies are usually conducted in 50−100 patients with the disease rather than healthy volunteers as in phase I.
In phase I and II trials a very low dose of the investigational drug is usually given to a small number of people who are then monitored closely in a purpose-designed early phase unit. An early phase unit is similar to an intensive care ward with about 10 beds, each with sophisticated monitoring and emergency treatment facilities such as electrocardiograms, electroencephalograms, blood chemistry and haematology analysers, oxygen, intravenous fluids and resuscitation equipment. These units are often located within a hospital. If the first participants show no ill effects the dose is increased in the next group. This process is repeated several times until a minimum effective and maximum tolerated dose is established.
The maximum tolerated dose is reached when a specified percentage of participants experience adverse events as predefined in the study protocol.
Phase III
Phase III trials involve larger numbers of patients with a particular disease or condition and are usually randomised comparative double-blinded studies. The comparator is either placebo or an active drug already well established as treatment for the disease under investigation, or both. Typically, several hundred patients are exposed to the investigational drug in these trials, which are designed to show efficacy and safety and to better determine the appropriate dose range. The cost-effectiveness of a drug is sometimes analysed during the phase III trial stage. In a typical development program for a new medicine, several phase III trials are required by the regulatory authorities. Unfortunately, even with a large-scale phase III program, uncommon adverse events may not be detected until the new medicine is used widely in the community. As a rule of thumb, you need to expose about three times as many patients to a drug to reliably detect an adverse event that has a particular incidence; for example, to detect a 1 in 1000 event, 3000 patients need to be exposed.
Phase IV
Phase IV (post-registration) trials are those undertaken after the new medicine has been registered and are usually randomised controlled trials. They are designed to answer important questions which help determine its clinical position (for example first-, second-, or third-line use), cost-effectiveness, and safety profile in certain patient populations.
Phase IV trials may be very large studies involving thousands of patients for several years. They are very expensive but often more useful than the earlier registration studies because they allow broader, more realistic patient groups to be studied.
Publication of study results
Timely publication of study results is critically important to allow free and rapid dissemination of new research. However, studies with negative or unfavourable outcomes are sometimes not submitted for publication, a practice frowned upon by industry, clinicians and academia. Acceptance of a proposed publication by a medical journal is dependent on many factors such as its accuracy and quality, as well as its relevance and interest to readers. Failings in any of these areas may mean a study is not published.
The pharmaceutical industry has adopted a global standard proposed by the International Committee of Medical Journal Editors whereby a study must be registered on a public website (such as the FDA's www.ClinicalTrials.gov, or the National Health and Medical Research Council's www.actr.org.au) before the enrolment of the first patient, if it is to be published in any of the major medical journals1
This allows doctors and patients to easily see what studies are being conducted with particular drugs for any given therapeutic area or disease state.