Clinical questions are 'Does this person have a significant, identifiable contributor to the diabetes in addition to age, physical inactivity and obesity?' and 'How will this alter my management?' To answer these questions requires clinical skill and judgement. Doing every possible test in every patient would be inappropriate.
During the history and physical examination, consider if the patient is on any drugs such as olanzapine which could contribute to hyperglycaemia, or has a disease which is associated with diabetes.3,4 Endocrinopathies such as acromegaly, Cushing's syndrome or hyperthyroidism and conditions such as pancreatic cancer and haemochromatosis can cause hyperglycaemia.
Genetics
More recently, the search for an explanation of the patient's hyperglycaemia has been expanded to include the question 'Does this patient have a genetic contributor to the diabetes which can be identified and which would alter management?'.
Genetic mutations have been found in young people who present with features of type 2 diabetes. These conditions are collectively known as maturity-onset diabetes of the young (MODY). They are different from the type 2 diabetes which is now occurring in obese young people. The mutations cause dysfunction of pancreatic beta cells, but autoantibodies are usually absent.
MODY accounts for 1–2% of cases of diabetes. It is usually diagnosed before the age of 25 years. As there is autosomal dominant inheritance, there is a strong family history of diabetes present in every generation. The six genes listed in the Table account for most cases of MODY. The most common conditions are MODY 2 and 3. Identifying the mutation may significantly alter treatment.
MODY 1 and 3
Mutations in the hepatic nuclear factor genes result in MODY 1 and 3. These mutations are associated with hyperglycaemia that leads to microvascular complications so these patients require treatment. They may have been born large, and experienced postnatal hypoglycaemia, and they have glycosuria. The mutations produce an insulin deficiency picture which is likely to be mistaken for type 1 diabetes, but the patients do not become totally insulin deficient with time.
The patients may be particularly sensitive to therapy with sulfonylureas. Early in the disease, glycaemic control may be better with a sulfonylurea than with insulin.
MODY 2
In MODY 2 a mutation causes a defect in glucokinase – a glycolytic enzyme. This results in fasting hyperglycaemia, but little postprandial hyperglycaemia. During a glucose tolerance test, despite the fasting hyperglycaemia, the rise in blood glucose after a glucose load is less than 3 mmol/L.
Recognising MODY 2 is important as it is not associated with microvascular complications and so it does not require any treatment to control blood glucose. However, there are two major caveats.
The hyperglycaemia is often first detected during pregnancy and may require treatment. The risk to the fetus depends on whether the fetus also has the mutation or not. Unaffected fetuses are at risk of being oversized, while affected fetuses may be undersized if the mother's hyperglycaemia is treated.‡ The other caveat is that a glucokinase mutation does not protect against developing type 2 diabetes. The risk is thought to be the same as in the general population. People with MODY 2 should be monitored (using HbA1c) to detect worsening hyperglycaemia.
Mitochondrial diabetes
In mitochondrial diabetes a mutation is inherited from the mother. It is usually associated with hearing impairment. The mutation in mitochondrial DNA results in a gradual functional decline in the pancreatic beta cells.