All patients need supportive care2as well as specific treatment.
Aspiration (chemical) pneumonitis
The airway should be cleared of fluids and particulate matter as soon as possible after the aspiration of gastric contents is witnessed. Endotracheal intubation should be considered for those who are unable to protect their airway. Although it is common practice, there is no evidence that prophylactic use of antibiotics improves outcomes and, theoretically, this may make things worse by selecting out resistant organisms. Conversely, there may be difficulty distinguishing between purely chemical pneumonitis and bacterial infection. In clinical studies, up to 25% of patients develop superimposed bacterial infection during the course of chemical pneumonitis.
A reasonable compromise is to withhold antibiotics where the diagnosis is clear. Empirical antibiotic treatment should be considered if there is no improvement after 48 hours. If the pneumonitis cannot be distinguished from bacterial pneumonia or if patients have conditions known to be associated with colonisation of gastric contents (for example small bowel obstruction, or being in intensive care) immediate empirical antibiotic treatment is appropriate.
Corticosteroids have been used, with varying degrees of enthusiasm, for decades in the management of aspiration pneumonitis, but there are limited data to support this practice. Studies in humans are generally unsuccessful and sometimes the outcomes are worse for those treated with corticosteroids. Large randomised controlled trials of high dose corticosteroids for adult respiratory distress syndrome (of which chemical pneumonitis is a subset) showed no benefit.3As a result, this treatment is not recommended.
Bacterial aspiration pneumonia
In contrast to chemical pneumonitis, antibiotics are the most important component in the treatment of aspiration pneumonia. Early empirical treatment is required for cases that are severe enough to warrant hospitalisation. Waiting for the results of culture is unwise and will disappoint because of the low yield. Where practical, samples of blood, sputum and pleural fluid should be taken for culture before antibiotic use. If antibiotics have already been used, cultures may still be helpful in severe cases with a large organism load.
Which antibiotic?
The choice of antibiotic is influenced by the clinical setting (community- versus hospital-acquired), culture results, previous antibiotic use, and disease characteristics. The recommendations of Therapeutic Guidelines: Antibiotic4for empirical therapy (see box) emphasise the importance of anaerobic infection and minimise the role of aerobic organisms. I believe the emphasis should be tilted to at least giving equal importance to aerobic infection.
Therapeutic Guidelines: Antibiotic4recommendations for aspiration pneumonia
|
|
For severe aspiration or lung abscess:
benzylpenicillin 1.2 g intravenously 4-6 hourly + metronidazole 500 mg intravenously 12 hourly
If hypersensitive to penicillin:
use clindamycin 600 mg intravenously eight hourly as a single drug
If Gram negative pneumonia is suspected:
add gentamicin 4-6 mg/kg intravenously daily; alternatively, as a single agent use ticarcillin + clavulanate 3.1 g intravenously six hourly OR piperacillin + tazobactam 4.5 g intravenously eight hourly
|
|
Antibiotic regimens which only aim at anaerobic infection are indicated if there is evidence of anaerobic infection (for example lung abscess or empyema with putrid sputum) and reasonable confidence there is no aerobic infection. Metronidazole used alone results in a significant treatment failure rate and should be used with another drug, usually penicillin.5,6If penicillin allergy is a problem, clindamycin alone is adequate. I prefer clindamycin for intravenous treatment as it is more effective than penicillin alone and comparable to the combination of penicillin and metronidazole. Clindamycin is more convenient to administer and overall is as well tolerated, although its adverse effect profile differs from that of penicillin and metronidazole. Amoxycillin-clavulanate alone is also effective. For oral therapy, I prefer either amoxycillin-clavulanate or clindamycin alone over penicillin with metronidazole for similar reasons.
The value of other drugs commonly prescribed to treat pneumonia has not been systematically studied in anaerobic infection. It is likely that some of these, for example macrolides, second and third generation cephalosporins, may be ineffective as they lack activity against some anaerobes including the Bacteroides group. Drugs such as ciprofloxacin, aminoglycosides and trimethoprim-sulfamethoxazole have poor activity against all anaerobes.
Imipenem, meropenem or any combination beta lactam/beta lactamase inhibitor (e.g. ticarcillin and clavulanate or piperacillin and tazobactam) are effective against virtually all anaerobic bacteria and should be effective against anaerobic pulmonary infection. They are attractive if there is concern about aerobic Gram negative infection or infection due to the commonly recognised respiratory pathogens (Streptococcus pneumoniae, Haemophilus influenzae, Staphylococcus aureus and Moraxella species) as well as anaerobic infection. Therapeutic Guidelines: Antibiotic recommends adding gentamicin to penicillin/metronidazole or clindamycin where Gram negative infection is suspected. I prefer to use one of the regimens mentioned above as they are generally easier to administer, less toxic and do not require measurement of drug concentrations.
Depending on the clinical setting, anaerobic infection may be relatively uncommon compared with aspiration pneumonia due to aerobic organisms. These especially include Streptococcus pneumoniae and Haemophilus influenzae in community-acquired cases, and Staphylococcus aureus, aerobic enteric Gram negative organisms and Pseudomonas aeruginosa in hospital-acquired cases or where there has been previous antibiotic use. There is an array of antibiotic regimens for hospital-acquired pneumonia (which is largely caused by aspiration).4,7
Which route?
The decision to use intravenous rather than oral therapy will depend on a number of factors. More severe illness requires more aggressive treatment and greater certainty that adequate doses of antibiotic are delivered to the lungs. In these cases, especially if there is doubt about gastrointestinal absorption, intravenous therapy is required. In less severe illness, oral therapy will often suffice. Switching from intravenous to oral therapy will be determined by the individual patient's progress. In those who respond rapidly, oral therapy can often be introduced within 2-3 days.