Considering whether to start a patient on botulinum toxin depends on balancing the risks of treatment against the potential improvements in active and passive function, level of pain, secondary effects of unwanted muscle over activity and quality of life. In Australia, specialist medical practitioners such as ophthalmologists, neurologists, surgeons, rehabilitation specialists and paediatricians may access the government's Section 100 scheme. This provides reimbursement for the cost of botulinum toxin type A for the following conditions:
- blepharospasm
- spasmodic torticollis
- dynamic equinus foot deformity associated with cerebral palsy in children two years or over
- spasticity following stroke.
Botox is also approved for the treatment of strabismus in children and adults, focal spasticity of the limbs, primary hyperhidrosis of the axillae, and spasmodic dysphonia. Botox and Dysport are both approved for the treatment of glabellar forehead lines.
Blepharospasm
In blepharospasm and hemifacial spasm, botulinum toxin type A is administered by subcutaneous injection medially and laterally upper and lower orbicularis occuli muscles of the eyes. Risks include corneal exposure due to reduced blinking and acute angle closure glaucoma due to the anticholinergic effect.2
Cervical dystonia (spasmodic torticollis) (see ref. 3)
Patients with cervical dystonia have abnormal twisting or sustained postures of the head, neck and shoulders. Botulinum toxin type A is injected into the neck muscles to reduce pain and head rotation. Depending on the head position, a combination of the sternocleidomastoid, splenius, paravertebral, scalene and trapezius muscles may be injected. More than 50% of patients will have significant improvements in symptoms. Dysphagia is the most commonly reported adverse event, which in severe cases may lead to aspiration pneumonia.
Focal hand dystonia (writer's cramp) (see ref. 4)
Focal hand dystonia is a task-specific dystonia that may affect people who perform repetitive movements for sustained periods. The goal of treatment is to reduce the dystonic posture and improve function. The effect may not be as good when the goal is improvement of complex fine motor tasks, such as occurs with musicians. Electromyography or electrical stimulation is used to guide injections, and correct muscle selection is vital for a good outcome.
Hyperhidrosis (see ref. 5)
Hyperhidrosis is a condition of excessive sweating of the axillae, palms and soles of the feet. Causes of secondary hyperhidrosis such as hyperthyroidism should be excluded before starting treatment. Botulinum toxin type A is injected intradermally and adverse events are rare.
Spasmodic dysphonia (focal laryngeal dystonia) (see ref. 6)
Vocal cord spasm, typically adductor muscle spasm, may interfere with communication, and responds to botulinum toxin type A injections. Spasm of the abductor muscle also occurs but may be less responsive to botulinum toxin type A treatment. Laryngoscopy and electromyography are needed for diagnostic evaluation and injection. Injection of laryngeal muscles should be avoided in patients requiring a general anaesthetic for elective surgery.
Focal spasticity
Spasticity is one component of the upper motor neurone syndrome and is defined as a velocity dependent increase in muscle tone. Botulinum toxin type A is often used for managing hypertonicity in conjunction with other treatments such as splinting, stretching and strengthening antagonist muscles.
Children
Ideally, children receiving treatment should have access to a multidisciplinary clinic where other interventions for spasticity can be considered. The largest group of children receiving botulinum toxin type A for spasticity are those with cerebral palsy. Treatment has been shown to be effective in reducing equinus gait pattern in these children (injections to calf, hamstring and hip flexor muscles), improving upper limb function (injections to shoulder, elbow, wrist and finger flexor muscles), reducing pain (injections to hip adductors) and reducing the need for orthopaedic surgery.7,8,9,10 Children with dystonia may also improve with botulinum toxin type A treatment, although muscle selection and dosing is clinically challenging.
Children with spasticity and minimal contracture, who have functional or care goals, may benefit from treatment as early as 12–18 months. In general, botulinum toxin type A is less effective, particularly in the lower limbs, beyond the first decade.
Adults
Spasticity in adults is seen most commonly after acquired brain injury, stroke, multiple sclerosis and spinal cord injury. Setting goals before treatment, along with the pattern of affected muscle groups and the tone abnormality, determines muscle selection. Early treatment with botulinum toxin type A after stroke has been shown to reduce disability and carer burden.11,12
Cosmetic use
Botulinum toxin type A is used for treating glabellar lines (corrugator or procerus muscles), crow's feet (lateral fibres of orbicularis oculi muscle), and forehead lines (frontalis muscle).
Other uses
Botulinum toxin type A has also been shown to be of clinical benefit for patients with Parkinson's disease by reducing jaw tremor and excess salivation.13 It has been used to relieve sensory and motor symptoms associated with tics, Tourette's syndrome and restless legs syndrome, and for patients with migraine, drooling or neurogenic bladder.