The degree of suppression of the major cell lines (erythrocytes, white blood cells and platelets) depends on the different effects of the anticancer drugs on the precursor cells (stem cells) and the kinetics of the cell line in the peripheral blood compartment.
A few drugs primarily affect the primitive pluripotential stem cell and cause suppression of all cell lines. These cycle nonspecific drugs, such as nitrosoureas and some alkylating agents (e.g. chlorambucil), prolong the duration of bone marrow suppression more than phase-specific drugs, such as vinca alkaloids and antimetabolites.
Some drugs, such as corticosteroids, bleomycin, colaspase and vincristine, cause little or no myelosuppression. Steroid hormones, e.g. medroxyprogesterone acetate, have some myeloprotective effects. Coagulation abnormalities may follow chemotherapy and the haemolytic uraemic syndrome has been associated with mitomycin, bleomycin, cisplatin, methotrexate and carboplatin.
Neutropenia
The earliest and most common adverse effect is neutropenia as the half life of a granulocyte is only 4-6 hours.
Thrombocytopenia
Certain drugs predominantly produce thrombocytopenia. The timing of this effect is intermediate as platelets have a half life of 5-7 days. However, the nitrosoureas produce a late and severe thrombocytopenia with a nadir 4-6 weeks after treatment. The risk of haemorrhage is significantly increased when platelet counts are below 20 x 109/L and platelet concentrates may be required (in the presence of bleeding, associated sepsis or the use of antiplatelet drugs). Platelets should be given prophylactically if the count is below 10 x 109/L.
Anaemia
Anaemia is a late effect because the half life of erythrocytes is 120 days. This toxicity is usually not dose limiting and often the anaemia is due to the underlying cancer. The peripheral blood smear shows anisocytosis and, occasionally, macrocytosis. The bone marrow may show severe megaloblastic changes, especially after treatment with folic acid antagonists, pyrimidine and purine antagonists and hydroxyurea.
Management of bone marrow toxicity
Supportive care is critical. Infection secondary to neutropenia is a major life threatening complication and should be treated as a medical emergency. The risk is usually proportional to the neutrophil count, the duration of neutropenia and the presence of breaks in the skin or mucosa.
Neutropenic patients frequently present with nonspecific signs and symptoms: unexplained malaise, anorexia, headache, dizziness, vomiting, dyspnoea, diarrhoea, fever, sweating, rigors, cough, sputum, localised discomfort/pain (perirectal skin, recent injection sites and operation sites should be inspected), cyanosis, tachypnoea, tachycardia and hypotension.
Specific signs of a localised infection can be subtle in the absence of neutrophils, especially when analgesics and steroids may mask fever. Infections are usually Gramnegative bacteria, staphylococci or fungi, and can kill rapidly. An immuno compromised patient with a white blood cell count <1.5 x 109/L or neutrophil count <0.5 x 109/L and a fever of 38.2oC or other reasonable suspicion of infection should be investigated. Tests include a chest Xray and cultures of peripheral blood (and from central lines if present), urine and any suspected site of infection. The source of infection cannot be found in at least one third of patients. Empiric treatment with broad spectrum systemic antibiotics should be started within 2 hours. The patient should be in a single room and staff should wash their hands before and after touching the patient. Laminar flow beds and granulocyte transfusions are usually unnecessary.
The haemoglobin should be maintained above 9 g/dL unless symptoms dictate a higher Hb level. Other causes of anaemia such as haemolysis, bleeding and bone marrow replacement by tumour should be excluded.
The use of growth factors such as erythropoietin can ameliorate the anaemia associated with cancer and chemotherapy, and reduces the need for transfusions. Interleukin 1 (IL1) and IL2, and colony stimulating factors (GCSF, GMCSF, MCSF) have been used to stimulate myelopoiesis and granulocyte-macrophage function after chemotherapy. Colony stimulating factors produce a higher absolute granulocyte nadir and may shorten the duration of neutropenia, hospital stay and parenteral antibiotic therapy. However, no change in survival has been shown.