GLP-1 is rapidly degraded by the enzyme dipeptidyl peptidase 4 (DPP4), so its potential as a drug is very limited. However, drugs which are synthetic agonists at the GLP-1 receptor resist cleavage by DPP4.
Exenatide
Exenatide is an agonist which is administered twice daily before meals by subcutaneous injections from a pre-filled pen. The starting dose is 5 microgram twice daily, increasing if tolerated after one month to 10 microgram twice daily. A long-acting release formulation of exenatide that is injected subcutaneously once a week has been studied.
Exenatide is cleared by glomerular filtration and while no dose adjustment is needed for mild renal impairment, exenatide probably should not be used in patients with a creatinine clearance less than 30 mL/min or on dialysis. There have been no studies in patients with liver disease and the effects on human pregnancy are unknown.
Efficacy of exenatide in combination with oral hypoglycaemic drugs
Randomised placebo-controlled clinical trials have enrolled 1689 patients with suboptimally controlled type 2 diabetes despite treatment with metformin, sulfonylureas or thiazolidinediones. The metformin and/or sulfonylurea studies lasted 30 weeks and the thiazolidinedione study lasted 16 weeks. Patients were randomised to add placebo, low-(5 microgram) or high-dose (10 microgram) exenatide twice daily. The mean effects of exenatide, in comparison to placebo, were:
- a reduction in glycated haemoglobin (HbA1c) of approximately 0.6% with low dose and 1.0% with high dose (both doses resulted in significantly greater proportions of patients achieving an HbA1c of 7% or less)
- a reduction in fasting plasma glucose of approximately 1.0 mmol/L with low dose and 1.4 mmol/L with high dose
- reductions in postprandial glucose of approximately 2.0 mmol/L with low dose and 3.0 mmol/L with high dose
- progressive weight loss during the trial period, with a reduction in body weight of approximately 0.8 kg with low dose and 1.4 kg with high dose.
A total of 974 patients opted to continue exenatide in uncontrolled open-label extensions to these trials. For 283 patients follow-up lasted for two years.3During the two years the HbA1c reduction (approximately 1.0% from baseline) was sustained and weight loss continued (4.7 kg below baseline). Other statistically significant effects were increased high density lipoprotein cholesterol (0.12 mmol/L), decreased triglycerides (0.4 mmol/L) and decreased diastolic blood pressure (2.7 mmHg). The alanine transaminase concentration returned to normal in 39% of the patients who had elevated baseline concentrations.3This reduction probably reflects a decrease in liver inflammation in patients with non-alcoholic fatty liver disease.
The long-acting release formulation of exenatide has been used in a randomised placebo-controlled study of 45 patients with type 2 diabetes.4After 15 weeks of once-weekly subcutaneous injections the mean changes were:
- a reduction in HbA1c of 1.4% to 1.7% from baseline (with0.8 mg and 2.0 mg/week respectively) compared to a rise of 0.4% with placebo
- a reduction in fasting plasma glucose of 2.4 mmol/L and 2.2 mmol/L from baseline (with 0.8 mg and 2.0 mg/week respectively) compared to a rise of 1.0 mmol/L with placebo
- weight loss of 3.8 kg in the 2.0 mg/week arm, but no change in the 0.8 mg/week or placebo arms.
Efficacy of adding exenatide or insulin
In patients with suboptimally controlled diabetes despite maximal doses of metformin and a sulfonylurea, adding twice-daily exenatide was compared with adding once-daily insulin glargine.5After 26 weeks HbA1c had fallen by 1.1% in both groups. Exenatide reduced postprandial glucose more effectively and produced less nocturnal hypoglycaemia than insulin, whereas insulin reduced fasting plasma glucose more than exenatide did. Body weight decreased with exenatide (2.3 kg) but increased (1.8 kg) with insulin glargine. Similar results were found in a 52-week open-label study comparing the addition of exenatide with the addition of twice-daily insulin aspart in patients with suboptimally controlled diabetes despite taking maximal doses of metformin and sulfonylurea.6The HbA1c reduced by approximately 1% and fasting plasma glucose by approximately 1.7 mmol/L in both groups. Exenatide produced a greater reduction in postprandial glucose and caused weight loss, whereas the patients given insulin gained weight (between-group difference 5.4 kg).
Safety
GLP-1 agonists appear not to cause hypoglycaemia directly. When exenatide is added to metformin, the rates of hypoglycaemia are no different from those of adding placebo. However, when exenatide is added to a sulfonylurea, there is an increase in hypoglycaemia.
Gastric emptying is slowed by exenatide, and this may be an important part of its glucose-lowering mechanism, as it slows the absorption of carbohydrate. Gastrointestinal symptoms are common. Mild to moderate nausea is the most frequent adverse effect. The duration of nausea was not formally reported but was described as intermittent in a 16-week study. Analysis of the two-year follow-up data showed that when treatment-emergent adverse events were examined in 10-week intervals from baseline, the incidence of nausea was highest initially (39% of patients) and remained above 10% for subsequent 10-week intervals until 100 weeks had passed. However, only 3% of patients stopped exenatide because of nausea.2Weight loss was independent of the presence of nausea.
Anti-exenatide antibodies occurred in approximately 40% of patients. The antibody titre did not affect clinical efficacy, but the long-term significance of having antibodies is unknown. Injection site reactions are uncommon.
There is a possible association between exenatide use and acute pancreatitis. The incidence of acute pancreatitis with exenatide was 1.7 cases/1000 patient years in clinical development studies and 0.2/1000 patient years during post-marketing surveillance. By comparison, the incidence was 3.0/1000 patient years with placebo and 2.0/1000 patient years with insulin.
Liraglutide
Liraglutide is the second GLP-1 receptor agonist to be developed, and, like exenatide, is injectable.
Efficacy
The published randomised controlled clinical trials of liraglutide monotherapy enrolled 745 patients with type 2 diabetes. These studies were phase II dose-ranging studies which lasted 5-14 weeks. Patients were randomised to use placebo, once-daily liraglutide at various doses, metformin or glimepiride. The mean effects of liraglutide, in comparison to placebo, were:
- a reduction in HbA1c at doses of at least 0.6 mg/day. This reduction was approximately 0.9% at low dose (0.6-0.75mg/day) and 1.7% at high dose (1.9-2.0 mg/day).
- a reduction of fasting plasma glucose of approximately 2.2 mmol/L with low doses and 3.4 mmol/L with high doses
- significantly greater proportions of patients achieving postprandial glucose less than 10 mmol/L with high doses
- a weight loss from baseline of 2.5 kg with high doses.
Comparison of the effect of adding liraglutide 2.0 mg/day or adding glimepiride 4 mg to treatment with metformin showed:
- no difference in amount of HbA1c reduction
- a greater reduction in fasting serum glucose (1.2 mmol/L more than glimepiride)
- a greater reduction in postprandial glucose (1.1 mmol/L less excursion than with glimepiride)
- a reduction in body weight (1.2 kg weight loss versus 0.8 kg weight gain with glimepiride).
Unlike exenatide, there are no published studies of liraglutide combined with sulfonylureas or thiazolidinediones. No significant changes in lipids were observed with liraglutide treatment.
Safety
The most frequent adverse effects of liraglutide are generally transient and include nausea, diarrhoea, vomiting and headache. With liraglutide 2.0 mg used as monotherapy or combined with metformin, the median duration of gastrointestinal events was 1-3 days, with most events reported in the first 23 days of treatment. Nausea led to withdrawal of 4% of patients from trials.
The incidence of confirmed hypoglycaemia associated with liraglutide use in clinical studies was extremely low. No antibody formation has been reported so far and injection site reactions are uncommon.