The first step in improving ventilation for patients with acute pulmonary oedema is to ensure that they are positioned sitting up.1 This reduces the ventilation–perfusion mismatch and assists with their work of breathing.
Oxygen is not routinely recommended for patients without hypoxaemia as hyperoxaemia may cause vasoconstriction, reduce cardiac output and increase short-term mortality.21 There is a risk that prescribing oxygen for a breathless patient in the absence of hypoxaemia may mask clinical deterioration and hence delay appropriate treatment.11 Supplemental oxygen and assisted ventilation should only be used if the oxygen saturation is less than 92%.11
If required, oxygen should be administered to achieve a target oxygen saturation of 92–96%. Depending on the clinical scenario, oxygen titration can occur using a number of oxygen delivery devices. These include up to 4 L/minute via nasal cannulae, 5–10 L/minute via mask, 15 L/minute via a non-rebreather reservoir mask or high-flow nasal cannulae with fraction of inspired oxygen greater than 35%. For patients with chronic obstructive pulmonary disease, the target oxygen saturation is 88–92% and the use of a Venturi mask with inspired oxygen set at 28% is recommended.11
If the patient has respiratory distress, acidosis or hypoxia, despite supplemental oxygen, non-invasive ventilation is indicated.2 There is no significant clinical benefit of bi-level positive airway pressure ventilation (BiPAP) over continuous positive airway pressure ventilation (CPAP), so the modality chosen should be guided by local availability.22,23 Non-invasive ventilation should be commenced at 100% oxygen with recommended initial settings of 10 cm of water pressure for CPAP and 10/4 cm water pressure (inspiratory positive airway pressure/expiratory positive airway pressure) for BiPAP.8 Contraindications to non-invasive ventilation include hypotension, possible pneumothorax, vomiting, an altered level of consciousness or non-compliance.7
If, despite non-invasive ventilation, there is persistent hypercapnia, hypoxaemia or acidosis, then intubation should be considered.7 Other indications for intubation include signs of physical exhaustion, a decreasing level of consciousness or cardiogenic shock. Endotracheal intubation is only indicated in a very limited number of cases and carries inherent risks and challenges. The rapid sequence induction needs to be modified to account for the haemodynamic compromise of the patient. After intubation constant suctioning is usually required and ventilation can be very challenging.7,19 Additionally, positive pressure ventilation is likely to potentiate any hypotension.