In recent years, evidence supporting a survival benefit for thalidomide, bortezomib and lenalidomide has resulted in their inclusion, in combination with older drugs, in the management of younger and older patients. Each of these new drugs has multiple mechanisms of action, targeting both intracellular signalling pathways and the tumour micro-environment. Their optimal sequence and combination is still being refined by ongoing clinical trials.
Thalidomide
Despite its notorious history, thalidomide emerged as the first important new drug treatment for myeloma following recognition of its anti-angiogenic effects in the 1990s. It is given orally, but its precise mechanism of action is unclear. Thalidomide also has immunomodulatory and anti-inflammatory effects. Initial studies in patients with relapsed or refractory myeloma showed a response rate of 32% when thalidomide was used as a single drug, with a considerably higher response rate (41–65%) when it was combined with dexamethasone with or without cyclophosphamide.3 Numerous subsequent studies have confirmed thalidomide's efficacy in a range of settings.
In elderly patients not eligible for transplant, randomised controlled trials show that the addition of thalidomide to melphalan and prednisolone results in response rates that are superior to melphalan and prednisolone alone. The partial response rate was 76% with melphalan, prednisolone and thalidomide compared with 48% in the melphalan and prednisolone group. However, an updated analysis found no survival advantage when thalidomide was added, probably because many of the patients in the control group later received thalidomide or other new drugs on relapse.4
In the younger patient group, thalidomide combined with dexamethasone is an effective pre-transplantation induction regimen.3 It has also been used as 'maintenance' following high-dose therapy and autologous stem cell transplantation.3 Maintenance therapy with thalidomide increased four-year overall survival from 77% to 87% in studies of patients after autologous stem cell transplantation.3 The Therapeutic Goods Administration (TGA) has approved thalidomide in first-line treatment and for relapsed or refractory myeloma, but Pharmaceutical Benefits Scheme (PBS) funding is currently only available for relapsed or refractory myeloma.
Adverse effects
The most frequent adverse effects seen with thalidomide are constipation, fatigue, somnolence and peripheral neuropathy. As thalidomide significantly increases the risk of venous thrombosis, prophylaxis should be considered (aspirin, warfarin or low molecular weight heparin is recommended).
Thalidomide use is strictly regulated due to its teratogenicity. In Australia, patients, prescribers and dispensing pharmacists must be registered with the Pharmion Risk Management Program. They have to complete phone questionnaires emphasising the importance of effective contraception before receiving authority for each 28-day prescription. Distribution of the drug is carefully controlled and tracked.
Lenalidomide
Lenalidomide is an oral thalidomide analogue and acts by similar mechanisms, targeting both signalling pathways within the malignant plasma cell and the bone marrow micro-environment. After promising initial results as a single drug, trials comparing lenalidomide plus dexamethasone with dexamethasone alone found superior response rates (60% vs 24%) and improved median overall survival in relapsed myeloma.5 Trials involving newly diagnosed patients have shown an 81% response rate when combined with melphalan and prednisolone in elderly patients, and a 91% response rate when combined with dexamethasone in younger transplant-eligible patients.6,7 Lenalidomide is frequently effective even in patients whose myeloma is resistant to thalidomide.
Although approved by the TGA for relapsed disease, lenalidomide is not presently subsidised by the PBS. Haematologists can currently access lenalidomide through a temporary expanded access program established by the drug company.
Adverse effects
Unlike thalidomide, lenalidomide is not associated with somnolence, constipation or peripheral neuropathy, but causes neutropenia and thrombocytopenia. Thromboembolic events occur at an increased rate, hence antithrombotic prophylaxis is recommended. Effective contraception is also required given its teratogenic potential.
Bortezomib
Just as the use of thalidomide arose from an understanding of the importance of angiogenesis in myeloma, the development of bortezomib followed new insights into the importance of the proteasome. This is the intracellular structure responsible for orderly degradation of intracellular proteins. Proteasomal inhibition by bortezomib results in cellular apoptosis, particularly in malignant and proliferating cells.
Early studies showed that intravenous bortezomib had a higher response rate and a six-month survival advantage over high-dose dexamethasone in relapsed myeloma. The median overall survival was 29.8 months with bortezomib versus 23.7 months with dexamethasone.8 In newly diagnosed elderly patients, bortezomib used with melphalan and prednisolone resulted in a response rate of 89%, with overall survival being 90% at 16 months versus 62% in those treated with melphalan and prednisolone alone.9 Younger transplant-eligible patients had similarly impressive response rates when bortezomib was included in induction regimens.10
In Australia, bortezomib is currently subsidised by the PBS for patients who have progressive disease after at least one prior treatment, who have undergone or are ineligible for stem cell transplant and who have failed thalidomide. Ongoing therapy requires documentation of an adequate response. In contrast, for newly diagnosed patients its use is currently limited to those enrolled in clinical trials.
Adverse effects
The major adverse effects of bortezomib include fatigue, gastrointestinal upset, painful peripheral neuropathy, anaemia, thrombocytopenia and neutropenia. There is also an increased incidence of herpes simplex and herpes zoster infections.