The results of pulse oximetry can be affected by technical problems and physiological factors.
Calibration problems
The machines do not need regular calibration by the operator and the probes and electronics are extraordinarily robust. The machine will not display a result and will warn if it cannot detect an adequate pulse signal. It is fitted with an alarm, which can be set at low (or high) saturation levels as desired. Original calibration by the manufacturer is based on the empirical relation between in vivo pulse oximetry (SpO2) and the SaO2 measured on simultaneously sampled arterial blood in a CO-oximeter.
CO-oximeters, so called because they measure carboxy- or CO haemoglobin, are now fitted to all modern blood gas analysers. They use multiple wavelengths of light to detect the four different forms of haemoglobin. The calibration process generally relies on data generated from healthy volunteers made hypoxaemic to generate SaO2 values between 70% and 100%. When the SaO2 is reduced to between 70% and 40% the pulse oximeters become significantly inaccurate, particularly below 55%, and fail to track rapidly developing profound hypoxaemia.3However, it can be argued that the accurate detection of falls between 85% and 70% is of most use in clinical monitoring.
Physiological factors (Table 1)
The presence of abnormal haemoglobins disturbs the relation between SaO2 and CaO2. 'Functional saturation' ignores the possible presence of methaemoglobin, carboxyhaemoglobin and other abnormalities of haemoglobin. These abnormal forms will not carry oxygen normally and will add to the denominator of the O2Hb / [O2Hb + HHb] ratio. Usually abnormal haemoglobins only comprise a few percent of the total, even in heavy smokers who have increased concentrations of carboxyhaemoglobin. However, common drugs such as paracetamol and sulfa drugs can induce the formation of methaemoglobin. Anaemia will also reduce the oxygen content without changing the calculated functional saturation.
There will be difficulties relating the SpO2 to PaO2 if the position of the oxyhaemoglobin dissociation curve has been shifted by influences such as acid-base balance and carbon dioxide tension. If the SpO2 is above 92% the partial pressure of oxygen (PaO2) can change rapidly with very little change in saturation (Fig. 2). This latter physiological feature limits the usefulness of pulse oximetry in, for example, the assessment of pulmonary gas exchange efficiency and the detection of hyperoxia in preterm babies. Measurement of the partial pressure of arterial oxygen (PaO2) from in vitro samples or transcutaneous electrodes may be preferable for monitoring hyperoxia in the 'flat' part of the dissociation curve.
Pulse oximetry has also been an enormous boon in intensive care units. However, measurements can be difficult to obtain in low perfusion states or where inotropes such as dopamine are being used to sustain blood pressure.
Confounding factors (Table 2)
Abnormal haemoglobins and anaemia are 'physiological' confounders but these abnormalities can also affect the accuracy of the measurements. In animal experiments, SpO2 decreases as methaemoglobin increases up to 35%, and SpO2 increases as carboxyhaemoglobin increases up to 70%. Modest concentrations of these haemoglobins will not substantially change SpO2 which is a functional saturation. Anaemia has to be severe (50 g/L) before it interferes significantly with the measurement.
Abnormal dyes and pigments such as methylene blue (used to treat methaemoglobinaemia) and severe hyperbilirubinaemia may interfere. In most clinical circumstances, these disturbances will not be present to a significant degree, but they need to be kept in mind. Strong superficial pigments such as nail polish must be removed and signal failure may occur in black patients although careful positioning on the less pigmented nail bed usually overcomes this problem. Venous pulsation may confuse the signal, reducing the displayed saturation, particularly where a tourniquet is applied above the probe or in the presence of right heart failure or tricuspid incompetence. Excessive motion of the probe and strong incident light can also cause an erroneous or inadequate signal. Motion artifact is also a problem in many longer-term settings where movements can be interpreted as a pulse.
The pulse oximeter does not measure partial pressure of oxygen in arterial blood (usually expressed as mmHg) and the relationship between SpO2 and PaO2 is complex.