P-glycoprotein is an important mediator of drug-drug interactions.3 The pharmacokinetics of a drug may be altered when co-administered with compounds which inhibit or induce P-glycoprotein.3,5,6 Inhibitors include clarithromycin, erythromycin, ritonavir and verapamil. Inducers include rifampicin and St John’s wort.
P-glycoprotein has a very wide substrate spectrum similar to CYP3A4. It is involved in the transport of drugs from different drug classes including:
- antineoplastic drugs e.g. docetaxel, etoposide, vincristine
- calcium channel blockers e.g. amlodipine
- calcineurin inhibitors e.g. cyclosporin, tacrolimus
- digoxin
- macrolide antibiotics e.g. clarithromycin
- protease inhibitors.
The substrates of P-glycoprotein can be further divided into drugs which are not metabolised in humans, such as digoxin, and those which are substrates of both P-glycoprotein and drug-metabolising enzymes, particularly CYP3A4.2,3 As many P-glycoprotein substrates are also substrates of CYP3A4 and because P-glycoprotein inhibitors are also inhibitors of CYP3A4, many drug-drug interactions are related to inhibition or induction of both P-glycoprotein and CYP3A4. Drugs which are ‘objects’ of such interactions include cyclosporin, tacrolimus and rivaroxaban.3
Enterocytes, like hepatocytes, simultaneously express the major drug-metabolising enzyme CYP3A4 and the efflux transporter P-glycoprotein.7 This creates a drug efflux–metabolism ‘alliance’, which increases the exposure of the drug to metabolism by CYP3A4 through repeated cycles of absorption and efflux.2 Modification of this active barrier function by concomitantly administered drugs contributes to altered absorption, increased interindividual differences in systemic drug concentrations and probably an increased risk of toxicity.4
Accurate prediction of potential drug-drug interactions through P-glycoprotein is complicated by pronounced interindividual differences in bioavailability. This also affects drugs that are not metabolised in humans (fexofenadine, digoxin).2,4 A better knowledge of the role of genetics in transporter expression and function will contribute to a better understanding of interindividual and interethnic differences in drug disposition and effects.2