Calcium carbonate is the most common form of phosphate binder prescribed, particularly in nondialysis chronic kidney disease. It is typically given to patients with advanced chronic kidney disease, including those receiving dialysis. As with all phosphate binders, calcium-based binders are most effective when taken with meals (which also limits calcium absorption).10 They should be prescribed in conjunction with moderate dietary phosphate restriction, ideally supervised by an accredited practising dietitian. Phosphate-rich foods with a high phosphate to protein ratio (processed foods, fast foods and cola drinks) are best avoided, while foods with a high biologic value (e.g. meats and eggs) should be retained to maintain nutritional status.11,12
Aluminium-based binders are a second-line drug in non-dialysis chronic kidney disease. The other newer non-calcium-based binders – sevelamer, lanthanum and sucroferric oxyhydroxide – are only available under the PBS for dialysis patients.
For all binders except lanthanum and sucroferric oxyhydroxide, the starting dose is typically 1–2 tablets three times daily with each meal, depending on potency. Between-meal snacks are often covered with half a tablet. For calcium-based binders and sevelamer, the dose can be increased to a maximum of six or more tablets daily. Other medicines should be given separately as phosphate binders can interfere with the absorption of drugs such as oral iron13 and ciprofloxacin.14
Calcium-containing phosphate binders
Calcium binders have historically been an appealing first choice, because they also address the hypocalcaemia that is often seen with hyperphosphataemia in patients with chronic kidney disease. However, hypercalcaemia and accelerated vascular calcification are the main concerns with calcium-containing phosphate binders, particularly when they are combined with vitamin D therapy.5,15-18
The Kidney Disease Outcomes Quality Initiative Guidelines suggest that doses should not exceed 1500 mg/day of elemental calcium,19 based on evidence that this produces a positive calcium balance (excess body stores of calcium leading to soft-tissue and vessel calcification) in chronic kidney disease.20 However, there is little evidence of patient outcomes to support this recommendation. Another common adverse effect of these drugs is gastrointestinal upset, particularly constipation. The other main advantage of calcium-based binders is that they are inexpensive.
Aluminium-containing phosphate binders
Aluminium hydroxide has an excellent phosphatebinding capacity and has been used for over three decades. A number of (principally US-based) guidelines advise against long-term use of aluminiumbased binders because of concerns about aluminium intoxication (dementia, osteomalacia, anaemia).21 This is despite little evidence of toxicity with these drugs in an era of ultrapure dialysis water quality.22 Some European countries as well as Australia still use aluminium for this purpose but regular testing of dialysis water is mandatory if aluminium is to be used orally. Also, oral citrate must be avoided in patients taking aluminium binders as this has been shown to lead to enhanced absorption and cases of neurological toxicity.23 There are a limited number of small randomised trials examining the efficacy and safety of aluminium as a binder. However, they were inadequately powered for examining patient‑level outcomes.24-29
Sevelamer hydrochloride
Sevelamer is the most commonly prescribed noncalcium-based phosphate binder, but has a lower phosphate-binding capacity than other phosphate binders. Its off-target effects include lowering serum low-density lipoprotein cholesterol and increasing the concentrations of fetuin-A (calcification inhibitor).30 However, these effects have not been shown to improve cardiovascular outcomes for dialysis patients in prospective trials.
The primary disadvantages of this drug are its high price and high pill burden. It may also reduce the bioavailability of fat-soluble vitamins. Its main adverse effects are gastrointestinal intolerance and metabolic acidosis.31
Lanthanum carbonate
Lanthanum is a trivalent metal phosphate binder which has a similar affinity for phosphate as aluminium-based drugs.32 It is roughly twice as potent as calcium and sevelamer. Lanthanum powder is more effective than chewable tablets33,34 and reduces the pill burden.35 It is also the only oral phosphate binder to come in three different tablet strengths, meaning the maximum number of tablets per day is always three. Despite poor intestinal absorption, lanthanum may deposit in tissues, particularly liver and bone.36 However, in studies with extended follow-up there is no evidence of clinical hepatotoxicity37 and bone toxicity.38,39 Like other phosphate binders, lanthanum may cause gastrointestinal intolerance, particularly nausea. Similarly to sevelamer, this drug is expensive.
Sucroferric oxyhydroxide
Sucroferric oxyhydroxide is now registered in Australia as an iron-based phosphate binder for patients with chronic kidney disease on dialysis. Phosphate binding occurs across a wide range of stomach pH, with a peak at pH 2.5.40 Common adverse effects include diarrhoea and change in stool colour. There was no evidence of iron accumulation in a phase III extension study.41,42 The binder has a similar pill burden to lanthanum carbonate, as it is given as one pill with each meal and is easily chewable, which may improve patient adherence.43 The cost of sucroferric oxyhydroxide is similar to lanthanum and sevelamer.
Other phosphate binders
A number of other drugs have been used as phosphate binders, including sevelamer carbonate,44 calcium acetate,45 magnesium carbonate,46 ferric citrate,47 colestilan,48 bixalomer49 and nicotinic acid50 but are not registered in Australia for this purpose.