Pharmacokinetic modelling is a mathematical method for predicting how a drug will be handled by the body. The term population pharmacokinetics almost always refers to ‘mixed-effects’ modelling. This is a mixture of fixed and random effects.
Fixed (structural model) effects are parameters such as clearance and factors that significantly influence clearance (for example weight, age). Random effects (variance model) parameters include the intersubject variability, and the variability which remains unexplained after fitting the model to the data.
Non-population methods (Box 1)
In traditional pharmacokinetics studies, small numbers of people are intensively sampled over a given post-dose period using a fixed design. This is the so-called ‘two-stage’ approach. It is still widely used, for example in comparative bioavailability trials4 and in clinical pharmacokinetics.5
In the first stage the values of the pharmacokinetic parameters (for example clearance) in each individual are calculated. The second stage involves estimation of descriptive statistics, usually the mean or geometric mean and standard deviation for each parameter. For example, the mean renal clearance of metformin is 510 +/– 130 mL/minute.
There are deficiencies with traditional studies, including the inability to handle sparse data and to identify which covariates, such as age and weight, are important sources of pharmacokinetic variability. The imprecision in estimating the parameter values is also unidentified when fitting the model to the data. This uncertainty leads to the interindividual variability being overestimated.
Another traditional method is the ‘naïve pooled data’ approach in which data from all participants are pooled as if they had been collected from one ‘super-subject’. However, this approach ignores the sources of variability within and between individuals. It is not recommended even if there are numerous participants and the interindividual pharmacokinetic variability is relatively small.
Population methods (Box 2)
A population pharmacokinetic method deals with modelling in a cohort which has many participants (usually more than 40). The population is studied rather than the individuals in it. Samples can be collected from patients taking different doses over different periods of time (see Fig.).
In population pharmacokinetics one may be interested, for example, in estimating a typical value of drug clearance or oral bioavailability. The typical parameter value is usually the mode (most frequently occurring value). This approaches the population mean value as the number of patients increases. However, the individuality of the information supplied by each patient to the population analysis is not lost, but is used to estimate the most likely value of a parameter for each patient. The reliability of these individual estimates is predicated on the amount of data contributed by each patient and by how much their estimated parameter value varies from the typical population value. In a sense, each patient lends information to the population model, but borrows information back from the population model to obtain an estimate of their own pharmacokinetic parameters.
There is a misconception that population pharmacokinetics is a fallback method for when there are only very sparse data, and that the ultimate aim should be to build models with as many covariates as possible. Neither of these views is valid. First, there is no substitute for data and while a population approach can handle sparse observational data, there are limitations. For example, there should be more than one data point per patient, otherwise the interindividual variability becomes confounded (unidentified). Second, in the clinical context, it can be argued that a covariate should earn its place in a model only if its inclusion reduces the pharmacokinetic variability enough to warrant a change in prescribing. For example, renal function should be included when modelling the pharmacokinetics of gentamicin. Besides the problem of masking – in which two or more correlated covariates, for example weight and sex, can overlap in explaining a source of variability – complex models are harder to implement clinically and may increase the risk of prescribing errors.