Once renal impairment has been detected and creatinine clearance estimated, the need for dose alteration of renally cleared drugs must be determined. Generally dose adjustment is needed when the creatinine clearance is below 60 mL/min. People who have been taking a drug for many years may need a dose adjustment as they age. Adjustments can be achieved by a reduction in dose, or an extension of the dosing interval, or both. Knowledge of appropriate dosage adjustment is important to ensure the drug is effective and that accumulation and further kidney damage is avoided. There are various references to consult in Australia including the approved product information and the Australian Medicines Handbook. International references include the Renal Drug Handbook and Drug prescribing in renal failure.4Table 1lists some of the commonly prescribed drugs that require dose alteration in renal impairment.
Antiviral drugs
Renal clearance is the major route of elimination for many antivirals, including those used for treating herpes simplex, herpes zoster and cytomegalovirus infections (such as aciclovir, famciclovir, valganciclovir and ganciclovir). In patients with renal impairment, renal clearance of these drugs is reduced and the elimination half-life is significantly prolonged. As a result, normal doses will accumulate and may lead to neurological signs such as dizziness, confusion, hallucinations, somnolence and convulsions, as well as more rarely, tremor, ataxia, dysarthria, seizures and encephalopathy. These adverse effects are dose-related and reversible on stopping the drug. They are especially problematic in elderly patients or patients taking other neurotoxic medications. If essential, it may be possible to reintroduce the drug at a lower dose.
Hypoglycaemic drugs
Renal function needs to be considered when prescribing three of the major groups of hypoglycaemic drugs - biguanides (metformin), sulfonylureas and insulin.
Metformin
Metformin has been associated with rare but potentially fatal lactic acidosis. This is thought to result from accumulation of metformin when renal impairment reduces renal clearance. The risk of lactic acidosis is potentially enhanced in conditions where tissue hypoperfusion and hypoxaemia are a problem (for example in cardiac or respiratory failure, or following a myocardial infarction), with increasing age and with higher doses of metformin (generally above 2 g/day). The common adverse effect of nausea is also dose-related and more likely to occur in the presence of renal impairment.
No definitive guidelines exist on reducing the dose of metformin in renal impairment, and lactic acidosis has been reported with doses as low as 500 mg/day.5 Ideally, metformin should be avoided in patients with a creatinine clearance of less than 30 mL/min and should be used with caution, at a reduced maximum daily dose of 1 g, in patients with a creatinine clearance of 30-60 mL/min. For those patients with a creatinine clearance of 60-90 mL/min, the recommended maximum daily dose is 2 g. Metformin should also be withheld temporarily in patients undergoing surgery, suffering from dehydration, trauma or serious infections, or undergoing procedures likely to affect renal function (for example, contrast studies).
Sulfonylureas
Long-acting sulfonylureas such as glibenclamide and glimepiride are associated with a higher risk of hypoglycaemia in comparison to short-acting sulfonylureas. In patients with renal impairment and/or advanced age, the risk of hypoglycaemia is increased. These drugs are inherently long-acting as well as having metabolites that are excreted renally. Shorter-acting sulfonylureas such as gliclazide or glipizide are a safer choice in patients with renal impairment. They should be started at a low dose and increased gradually.
Commonly prescribed drugs that require dose adjustment in renal impairment
Table 1
|
|
|
|
Class
|
Examples
|
|
Antibiotics/antifungals
|
aminoglycosides (e.g. gentamicin), vancomycin, ceftazidime, cefepime, cephazolin, ciprofloxacin, fluconazole, piperacillin, carbapenems (e.g. meropenem), sulfamethoxazole
|
Antivirals
|
famciclovir, aciclovir, valaciclovir, valganciclovir, ganciclovir
|
Anticoagulants
|
low molecular weight heparins (e.g. enoxaparin)
|
Cardiac drugs
|
digoxin, sotalol, atenolol
|
Diuretics
|
If creatinine clearance is less than 30 mL/min: - avoid potassium-sparing diuretics due to risk of hyperkalaemia - thiazide diuretics have limited efficacy
|
Opioids
|
morphine, codeine, pethidine (due to risk of accumulation of active or toxic metabolites)
|
Psychotropics/anticonvulsants
|
amisulpride, gabapentin, lithium, levetiracetam, topiramate, vigabatrin
|
Hypoglycaemic drugs
|
metformin, glibenclamide, glimepiride, insulin
|
Drugs for gout
|
allopurinol, colchicine
|
Others
|
lamivudine, methotrexate, penicillamine
|
|
Insulin
Renal elimination accounts for up to half of the clearance of insulin, so as renal failure progresses, less insulin is excreted, so smaller doses are required. Patients with diabetes and renal impairment can also have unrecognised gastroparesis which may disconnect absorption of ingested food from the time of the insulin injection. This can lead to erratic glucose regulation that may be complicated by frequent episodes of hypoglycaemia.
Spironolactone
Since the publication of the Randomized Aldactone Evaluation Study6in 1999, the use of spironolactone, in conjunction with an angiotensin-converting enzyme (ACE) inhibitor, has increased. In this trial, the addition of spironolactone significantly improved morbidity and mortality in patients with advanced heart failure. However, almost immediately following this publication came reports of an increase in hospital admissions (and subsequent deaths) related to hyperkalaemia.7
Hyperkalaemia is a particular problem for patients with renal impairment and its risk is heightened by advanced age, doses of spironolactone exceeding 25 mg/day, dehydration, diabetes mellitus, and simultaneous treatment with non-steroidal anti-inflammatory drugs, ACE inhibitors or angiotensin receptor antagonists. Prescribers are urged to frequently monitor serum potassium, creatinine and urea when starting spironolactone for heart failure, and to consider avoiding its use in patients with a creatinine clearance of less than 30 mL/min.
Allopurinol
Allopurinol is used in the management of gout to lower serum and urinary uric acid concentrations. As allopurinol, and its active principal metabolite oxypurinol, are mainly excreted in the urine, they accumulate in patients with poor renal function so the dose should be reduced. The manufacturers recommend starting treatment with a maximum dose of 100 mg/day and increasing it only if the serum or urinary urate is not satisfactorily controlled.
Hypersensitivity reactions to allopurinol are characterised by fever, chills, leucopenia, eosinophilia, arthralgia, rash, pruritis, nausea and vomiting. The frequency of this reaction is thought to be increased in patients with renal impairment, and in those who are concomitantly taking allopurinol and a thiazide diuretic. Caution is advised when using this combination in renal impairment.