The systemic arterial circulation consists of a pulsatile pump, the left ventricle, and a distributive arterial network comprising the aorta, large arteries and the microcirculation. As the pump is pulsatile, a haemodynamic description of the systemic circulation may be considered in terms of mean and pulse pressure. The mean arterial pressure is determined by cardiac output and peripheral vascular resistance, while the pulse pressure is the difference between the systolic and diastolic blood pressures.
The magnitude of the pulsatile component of the systemic arterial pressure largely results from the interaction between left ventricular stroke volume and the compliance of the arterial system, with possibly some additional contribution from wave reflection. Pressure waves travelling from the heart to the periphery may be subject to wave reflection. This is where the forward-travelling pressure wave is reflected back to the heart, particularly at points where the arterial circulation becomes narrowed. The magnitude and clinical significance of wave reflection is a topic of some uncertainty.
The compliance of the arterial circulation is defined as the increase in contained volume in response to pressure increase and results from the fact that arteries are distensible. The degree of their distensibility varies throughout the circulation being highest in the proximal aorta which therefore has the greatest compliance in the arterial circulation.
The magnitude of large artery compliance is a function of arterial geometry (mainly diameter) and the properties of the arterial wall, predominantly wall stiffness. In healthy young people the wall is not stiff and therefore ‘buffers’ each left ventricular ejection. This limits the rise in systolic pressure and provides a supplemental pump to deliver blood flow during diastole. With ageing and certain diseases the large arteries become stiffer and progressively less able to provide the ‘buffer’ function. This results in a rise in systolic blood pressure and a decrease in diastolic blood pressure therefore widening the pulse pressure.
The acute response of large artery walls to increasing pressure is non-linear. As the blood pressure rises the walls become stiffer. A rise in mean pressure will therefore cause an increase in stiffness and a widening of pulse pressure. From middle age, a rise in pulse pressure is largely dependent on the degree of stiffness of the large arteries whereas in younger people it is largely a function of left ventricular stroke volume.
In addition to ageing, atherosclerosis increases the stiffness of large arteries. Increased arterial stiffness may thus be a surrogate marker for atherosclerotic vascular disease. A widened pulse pressure may be a marker for the extent of coronary disease. Measurement of pulse wave velocity (which increases with increased stiffness) has been proposed as a useful addition to risk assessment. (Pulse wave velocity refers to the transit time of the pressure wave, i.e. energy, and not mass movement of blood.)
Consequences of changing pulse pressure
The physiological consequences of stiffened large arteries may be related to both the rise in systolic blood pressure and the fall in diastolic blood pressure. The rise in systolic and pulse pressure may lead to further vascular damage and stiffness creating a deleterious feedback loop.3 Experimentally enhanced pressure cycles have been shown to lead to accelerated vascular damage raising the possibility of a cyclical cause and effect whereby a stiffened vessel leads to amplified pulse pressure and further vascular damage.
In addition to the vascular consequences of elevated systolic pressure there is an increase in left ventricular afterload which may contribute to impaired left ventricular function. This may eventually result in an impaired capacity to generate the previously maintained stroke volume and hence an adequate pulse pressure. The relation between arterial compliance, stroke volume and pulse pressure is:
pulse pressure = stroke volume / compliance
A fall or rise in stroke volume at a given level of arterial compliance will therefore also affect pulse pressure.
he fall in diastolic pressure seen with pulse pressure widening may be particularly important for coronary perfusion since this occurs predominantly during diastole. In stenotic coronary arteries the reduced diastolic pressure could be expected to lead to impaired myocardial perfusion. Simultaneous measurements of blood pressure and ST segment depression in patients with angina showed a relationship between episodes of ‘silent’ ischaemia and immediately preceding hypotension noticeable at diastolic blood pressures below 65 mmHg.4 This could explain the J-shaped relation between diastolic blood pressure and cardiac events in patients with coronary disease. Reduced perfusion is likely to be more relevant with a shortened diastolic duration (i.e. fast heart rate) and this may indicate the value of choosing therapy that will limit this reduction.
The J-curve is less evident for cerebrovascular disease. This could be because the cerebral vasculature is not dependent on diastolic perfusion.